氟聚合物材料
风电叶片普遍面临三个问题:冰粘附和冲击、昆虫的累积、沙和水滴的侵蚀。Parent、Olsen均建立了一种叶片动态加热的除冰系统从而防止冰的粘附,但这种方法仅能“治标”,而且添加热力系统增加能源消耗。由于亲水的涂料会增强冰的粘附,Dalili等建议应当选择一种低表面能、疏水的涂料从根本上解决上述难题。
氟原子半径小、电负性大,有机氟聚合物中含有F-C键,键能高达515 kJ/mol,两个氟原子的范德华半径之和为0˙27 nm,基本上可将C-C键完全包围而不露出一点空隙,从而使得任何基团或者原子都无法进入破坏C-C键,这种屏障的效果使得有机氟涂料拥有许多特异的性能,如良好的化学稳定性、耐候性、耐热耐寒性、耐辐射性,另外含氟聚合物表面能低,具有疏水疏油的特点,优异的自润滑性能与低摩擦性能,这些特性与风电叶片涂料的性能要求不谋而合。
鉴于有机氟改性过的树脂与底材的附着能力欠佳,故含氟聚合物作为风电叶片涂料的面漆较为合适。
传统氟树脂以聚偏氟乙烯(PVDF)为代表,PVDF涂料户外的使用寿命可达20年以上。尽管具备优良的耐候性、韧性好、耐粉化等特点,但由于PVDF涂料的涂敷需要经过高温烘烤,加工过程稍显繁琐。
日本旭硝子公司1982年推出的Lumiflon产品,即三氟乙烯与烷基乙烯基醚交替共聚物,是世界首创的可溶型常温固化型涂料用氟树脂,除拥有氟涂料的防护效果好、防护寿命长等优点外,还可以常温固化简化施工,可在大型器件上直接喷涂。FEVE的成功研发,使氟树脂及涂料由传统的热塑性进入了热固性时代,加速了氟涂料的发展,拓宽了氟树脂涂料的应用领域。
日本电工株式会社和美国PPG公司均将三氟乙烯-烷基乙烯基醚交替的含氟共聚物用于风电叶片涂料,并将其用在耐候性要求最高的最外层。在Lumiflon分子结构中,R1作为烷基基团,提供聚合物的溶解能力,影响涂料的光泽与硬度;-OH作为常温固化的交联点,可用异氰酸酯作为固化剂;乙烯基醚-O-R3赋予树脂的被乳化能力,有助于涂料的柔韧性及稳定性;含氟链段则提供涂层超强的耐候性和耐久性。部分PFEVE分子结构中还含有酸性的羧基基团,可促进树脂和颜料、固化剂的相容性。
氟化树脂的引入有助于提高涂料的耐候性,但是Levine在研究了Lumiflon结合水性聚氨酯涂料的作用和效果后发现,增加Lumiflon的含量却导致了涂料的耐候性、强度的降低,主要的原因可能是含氟添加剂中的氧乙烯基被用于生成水性含氟聚合物乳液。
由于氟碳涂料价格昂贵,且以PVDF为代表的传统型氟碳涂料需要高温固化,限制了其在风电叶片上的应用。利用有机氟改性聚氨酯或其它树脂既提高性能、降低成本又能解决氟树脂附着能力差、不能常温固化的缺陷。Alois仅利用少量的含氟组分改性聚氨酯,所得涂料既能常温固化,且表面性能较原先聚氨酯有很大提高。研究一种性能更为优异且成本低廉,又能如Lumiflon可常温固化的含氟涂料势在必行,可以预见,这类涂料的诞生将推动风电叶片涂料的发展乃至整个风电行业的大步前进。
聚丙烯酸酯材料
丙烯酸树脂涂料因其耐候、耐光、耐腐蚀性能优异,粘接性好,对底材的附着能力强,已在各个领域得到广泛应用。但该树脂耐水、耐溶剂性能相对较差,且不耐磨,所以一般将丙烯酸树脂作为风电叶片涂料的底漆使用。
日本电工株式会社制备的叶片涂料总共三层,除最外层为上述所说的含氟涂层外,中间层为丙烯酸类和氨酯类聚合物组成的复合膜,底层则是丙烯酸类的压敏粘层。中间层的丙烯酸类聚合物主要是丙烯酸及其同系物单体、均聚物的玻璃化转变温度Tg低于0℃的丙烯酸类单体(如丙烯酸丁酯)和均聚物Tg不低于0℃的丙烯酸类单体(如异冰片基丙烯酸酯)这三类单体的共聚物。压敏粘层采用丙烯酸酯为主要组分,共聚混合含有羟基或羧基的单体,在底层的制备过程中,通过通入气体、加入发泡剂或空心微球材料使得压敏粘层获得气泡,而这种含气泡的结构其作用表现在对于叶片弯曲或者不平坦的表面仍能具有很好的附着能力。圣戈班公司制备的3层结构的涂料中,底层同样为丙烯酸类的压敏粘层,而中间层和最外层则推荐使用氟化聚合物和丙烯酸类聚合物的混合体系。
Paul提出一种使得外层具有很好的耐候耐磨性能而又能使得内层具有很好的粘附性能的方法:两者均由PVDF和聚甲基丙烯酸甲酯(PMMA)构成,其中外层的PVDF含量要高于PMMA,而内层PMMA的含量要高于PVDF。
美国PPG公司在风电叶片涂料中掺入适量丙烯酸类聚合物,合适的丙烯酸聚合物可以是丙烯酸的烷基酯和不饱和烯类的聚合物,如甲基丙烯酸甲酯和丙烯腈,而丙烯酸的共聚物也可以含有羟基组分,以方便涂料进行交联,特别是直链上含有2~4个碳原子的烷基羟基结构。
利用有机氟改性丙烯酸酯,改性后的涂料不仅保持了原有的丙烯酸酯的特性,还提高了涂层的耐候性、抗污性等。在国外,氟代丙烯酸酯聚合物已经成功地用作桥梁、建筑、汽车等耐候性要求较高的外用涂料,能否将该类聚合物引入到风电叶片涂料上是一个值得探讨和研究的问题。
其它材料
聚天门冬氨酸涂料是近几年新兴的高性能双组份涂料,耐黄变,性能稳定。拜耳公司[27]用聚天门冬氨酸酯作为聚脲的面漆或以单一的防腐涂层形式应用在风电叶片上,涂膜表干3h,具有极佳的防腐耐磨性能。有机硅涂料具备优良的耐候性、耐高低温性、抗水性、耐沾污等性能,已广泛应用于建筑、航天等领域。
在2009年10月北京举办的中国国际风能大会上,Dow corning公司展示了一种硅树脂涂层产品,该产品可直接敷在叶片表面,形成一层性能卓越的保护层。
环氧树脂涂料具备较高的粘接力,耐候性较强,防腐性能卓越,通过添加纳米无机材料对环氧树脂涂料进行改性,可以提高涂层的耐磨及防腐能力
Karmouch在环氧涂料中添加纳米级二氧化硅颗粒得到超疏水涂料,将该涂料应用在风电叶片基材上,结果发现涂层表面接触角可达到152°,且具备较强的紫外线耐受力。
除添加无机纳米材料外,直接涂抹无机薄膜作为防护涂层也能对叶片起到保护作用。Ni-P薄膜作为应用甚广的无机涂层,具备良好的耐磨和耐腐蚀性
Lee将Ni-P薄膜涂布在风电叶片上,在较高的P含量(P>7%)和较小的微空隙下,当底材玻璃纤维增强塑料(GFRP)的表面粗糙度超过0˙3μm后,涂料的防腐和耐磨性能将有所提高,此外,膜厚和抛光条件对涂膜性能也有影响。
结束语
现如今,居高不下的维修成本,是大力发展风力发电的绊脚石。研究一种经济高效的叶片涂料已成为推广风电产业发展的一个亟待解决的问题。风电叶片防护涂层材料的研发不局限于单一的某种材料,几种树脂的配套使用或通过改性可使涂料性能更趋优异,合理搭配聚氨酯、有机氟、丙烯酸类等聚合物,特别是利用有机氟改性有助于获得性能全面的叶片涂料。当前,我国的风电叶片涂料大部分还依赖进口,但相信随着研究的不断深入,综合性能优异的国产风电叶片涂料的问世指日可待,这对于促进风电的产业发展,提高国产风力机组在国际市场的竞争能力,实现我国风电设备制造的国产化意义重大。