泰山玻璃纤维
道生天合
沃达重工 液压机 华征新材料 奥德机械
当前位置: 首页 » 复材学院 » 学术论文 » 正文

碳纤维表面处理及其增强环氧树脂复合材料界面性能研究

放大字体  缩小字体 发布日期:2014-01-05  来源:苏州大学  作者:宋薇  浏览次数:112


 

    2、界面层的作用机理简介

    在组成复合材料的两相中,一般总有一相以溶液或熔融的流动状态与另一相接触,然后经固化反应使两相结合在一起形成复合材料。在这一过程中,两相间的作用机理一直是人们所关心的问题。目前,有关复合材料界面作用机理主要有以下几种理论:

    2.1机械粘结理论

机械粘结理论认为纤维表面存在高低不平的峰谷和细微的孔洞结构,当树脂基体填充并固结后,树脂和纤维表面产生机械性的互锁现象,而此种粘接作用的强弱与纤维表面的粗糙程度及树脂基体在复合材料制备过程中对于纤维的润湿性大小有很大的关联。

    2.2化学键合理论

    化学键合理论认为要使纤维与树脂基体间实现有效的粘结,两相的表面应含有能相互发生化学反应的活性基团,通过官能团的反应以化学键结合形成界面。若两相之间不能直接进行化学反应,也可通过偶联剂的媒介作用以化学键的方式互相结合。表面处理在纤维表面引入-COOH、-OH等活性基团,使纤维与树脂基体在界面形成化学键,提高了纤维与树脂基体的反应能力与粘结强度。目前,化学键合理论是应用最广也是应用最成功的理论,但是有些现象难以用化学键合理论做出令人满意的解释。

    2.3过渡层理论

    复合材料成型时基体和增强体的热膨胀系数相差很大,在固化过程中,二者界面上就会产生附加应力,此处成型时固化收缩也会产生内应力。过渡层理论认为在基体和增强体的界面存在一个过渡层,可以起到应力松弛的作用。一种理论认为过渡层是塑性层,塑性层的形变能起到松弛应力的作用。另一种理论认为过渡层是模量介于基体和增强体之间的界面层,它能起到平均传递应力的作用。

    2.4扩散理论

    扩散理论是由Borozncui首先提出的。该理论认为高聚物间的相互粘结是由表面大分子相互扩散所致,即两相的分子链互相扩散、渗透、缠结而形成界面层,从而有利于提高界面粘结强度。扩散理论有很大局限性,例如,高聚物粘结剂与无机物之间显然不会发生界面扩散问题。

    2.5静电理论

    静电理论认为所有的粘结现象大部分可解释为界面上的电荷转移而产生电双层,两个接触的表面各带不同的正负电荷,就如同化学酸碱反应或键结合离子作用,此种结合力量的大小视电荷的密度而定,这种作用在玻璃纤维复合材料中,对添加偶联剂而言是非常重要的,硅烷类偶联剂即可能造成正负离子的效应,使得电荷相互吸引而达到粘结的目的。但静电理论不能解释温度,湿度及其它各种因素对粘结强度的影响。

    2.6摩擦理论

    摩擦理论认为,基体与增强材料界面的形成完全是由于摩擦作用,基体与增强材料间的摩擦系数决定了复合材料的强度。处理剂的作用在于增加了基体与增强材料间的摩擦系数,从而使复合材料的强度提高。该理论可较好的解释复合材料界面受水等小分子物质浸入后强度下降,干燥后强度又能部分恢复现象。水等小分子浸入界面使基体与增强材料间的摩擦因数减小,界面传递应力的能力减弱,故强度降低。干燥后界面水分减少,基体与增强材料间的摩擦因数增大,传递应力的能力增加,故强度部分恢复。

    复合材料的基体与增强材料间界面的形成和破坏是一个极其复杂的物理和化学过程,目前人们对界面的认识还不够深入,还没有一种理论能完善的解释各种界面现象,界面理论还有待进一步发展和完善。

    3、氨水和浓HNO3对碳纤维表面处理及其增强环氧树脂界面性能研究

    3.1氨水改性碳纤维及其增强环氧树脂复合材料界面性能研究实验部分

    碳纤维表面光滑且呈化学惰性,与基体浸润性差,不能与基体进行有效粘合。因此,要获得界面结合性能优良的碳纤维复合材料,必须对其进行表面处理,通过表面处理可以改善碳纤维的表面浸润性,产生适合于粘结的表面形态,从而提高复合材料的界面结合性能。

    复合材料界面性能的提高主要归功于纤维表面粗糙度的增大和纤维表面极性官能团的增多这两个因素。在对纤维进行表面处理时,这两个因素往往同时出现并对复合材料的界面性能的改善同时起作用,这两个因素之间的关系,以及是否存在对复合材料界面性能的提高起主要作用的因素,目前尚没有被弄清楚,这就需要对这两个影响因素进行分别研究。

 
 
[ 复材学院搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

 

 
 
推荐图文
推荐复材学院
点击排行
(c)2013-2020 复合材料应用技术网 All Rights Reserved

  鲁ICP备2021047099号

关注复合材料应用技术网微信