该项目的最初灵感来自于含有Buligand结构的超韧天然复合材料,这在自然设计的材料中十分常见。在这样的结构中,由于任何撞击的力都被纳米级曲折推动成一系列迂回的弯道,分子在旋转的微观结构中分层,对裂纹产生弹性,进而使得能量被偏转,从而保持了整个材料的结构和功能。
Jeff Gilman说:“如果开发出合适的产品,其可用于从航空航天复合材料到保鲜食品包装等各方面。”
虽然木材没有天然的Brigigand结构,但通过用酸洗涤木浆来除去木质素和无定形纤维素,可以产生干燥的乳状溶液以形成具有该结构的新材料。就其本身而言,这些Buligand膜是相当脆弱的,并且难以承受较大的重量。然而,当短木材衍生的纳米纤维素棒与另一种具有较长杆的天然材料相结合时,得到的新型材料既强又柔软。
为此,研究人员使用了干燥的被囊生物,因为它们由极长且高度结晶的纳米纤维素组成,这与木材中较短的晶体截然不同。在温水地区的码头和码头上经常发现有大量的被囊生物,它们为亚洲菜肴中的一种。这里所用的被囊生物是在法国西部捕捉的,在那里它们被视为害虫。
通过测试复合材料,可以确定最大韧性的确切点。加入这些被囊生物意味着纳米晶体以不同的方式扭曲,并增加了木浆中的结构形成,得到的结构也更紧密和更致密,使材料具有紫外线反射性。正如NIST复合材料项目组长Jeff Gilman所指出:“许多材料如果长期暴露在阳光下就会开始降解,因此这种材料有可能被用作其他表面上的涂层,以反射光并延长材料耐久性。”
该团队将继续探索新型的共混方式,以制造工业用复合材料。正如Jeff Gilman所说:“如果开发出合适的产品,其可用于从航空航天复合材料到保鲜食品包装等各方面。”